Sounds like very interesting research prepared by a science writer with no grasp whatsoever of the work... I can't find the pre-release URL anywhere, so I guess I have to wait 'till the official publication
In the meantime, I will make fun of the anonymous newswise reporter, however:
Color change in cuttlefish skin is caused by pigments in star-shaped cells known as chromatophores. Upon certain inputs, pigment granules spread outward in cells, causing human skin, for instance, to tan or a chameleon’s skin to turn between green and brown. However, such changes take hours in humans and minutes in lizards. Cephalopods have some two million chromatophores that are directed by chemical signals originating in a central brain location.
Um, humans don't have chromatophores at all... when human chromatophores are available, I want to be first in line! I don't remember how chameleons work, but I'm pretty sure they don't either. I think the reporter probably wrote that chromatophores contain a pigment similar to human melatonin, and is confused. Although in a huge stretch, all nerve signals are chemical, a fundamental element of the ceph color change system is that it's controlled directly by the nervous system, by nerves running from the brain to the muscles of the chromatophores, so there is nothing special about the chemistry at the chromatophore end. It sounds like what's interesting is the neurotransmitter chemistry in the cuttlefish brain in the region controlling the chromatophores.
I'm really interested in the homunculus they've mapped, and I'd be particularly interested in how it relates to the cuttlefish's visual map of the world.
Cephalopods, which also include octopuses and squids, have 100 million nerve cells compared to the 10,000 in insects and the some one trillion in humans.
Unless something has changed dramatically recently, the human brain has about 100 billion neurons, not one trillion. This link suggests that the figures aren't so hot for cephs or insects, either, although they're not of by a whole factor of ten:
http://faculty.washington.edu/chudler/facts.html#brain
Average number of neurons in the brain = 100 billion
Number of neurons in brain (octopus) = 300 million (from How Animals See, S. Sinclair, 1985)
I've seen other references cite 100-200 million for octopus before, too. Messenger and Young claim that O. Vulgaris has 2 x 10^5 (200 thousand) cells at birth and 2 x 10^8 (200 million) at adulthood of which about 129 million are in the optic lobes. They don't give a number for
Sepia officinalis there is a table that compares the volumes of brains of cephs that puts
O. vulgaris at 92.6 mm3 CNS and 79.0 mm3 optic lobes, which lists
S. officinalis at 163.8 and 232.4. A little arithmetic: (163.8+232.4)/(92.6+79.0) = 2.3, so 460 million is a guess for an adult cuttlefish. (extra trivia: GPOs have bigger brains than
Architeuthis if you don't count the optic lobes.)
Anyway, I applaud the octobot for finding an interesting article and ridicule the anonymous science reporter for being unable to articulate it... I'm looking forward to reading the real paper, though!