Cuttlefish early development and behaviour under future high CO2 conditions


Staff member
Moderator (Staff)
Sep 4, 2006
Cape Coral, FL
Cuttlefish early development and behaviour under future high CO2 conditions
Moura, Érica Raquel Ferreira e 2019 (pdf available)
Abstract: Atmospheric CO 2 levels are rising since the beginning of the Industrial Era, and concomitantly, the uptake of CO 2 by the oceans is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). These changes can compromise key biological traits of many marine organisms, with potential cascading effects to population and ecosystem levels. Besides the significant neurological/physiological impairments, there is increasing evidence of detrimental OA effects on the behavioural ecology of certain marine taxa, including in cephalopods. Yet, the previous behavioural studies performed in these highly developed invertebrates were only focused on squids and the potential impacts in cuttlefish behaviour are still unknown. Within this context, the main objectives of this dissertation were to investigate OA effects in the development and behaviour of the common cuttlefish ( Sepia officinalis ) early-life stages – from early embryogenesis until 20 days after hatching, namely by exposing them to either present day ( ~ 400 μatm) and to the near-future levels of p CO 2 ( ~ 1000 μatm; ΔpH = 0.4). A comprehensive assessment of OA effects on cuttlefish development was performed by gauging embryogenesis duration, hatching success, early survival rate and body size measures (e.g. weight and length). Furthermore, different aspects of the cuttlefish behavioural ecology, including shelter-seeking, hunting behaviour and response to a visual alarm cue, were analysed to achieve a holistic overview of the OA impacts in cuttlefish early development. The present work did not find any evidence that OA future conditions compromise the cuttlefish embryonic development. The development time, hatching success, survival rate, and the length and weight of newly-hatched cuttlefish were similar between normocapnia and hypercapnia treatments. The Fulton’s Index was the only parameter that showed significant differences, with higher values to the hypercapnia treatment, which may be related with a denser cuttlebone. Concerning to the behaviours analysed, and in contrast with previous cephalopod studies, the results suggest a certain behavioural resilience of the cuttlefish hatchlings towards near-future acidification conditions. The behaviours of hunting, shelter-seeking and response to a visual alarm cue did not show significant differences between treatments. Their nekton-benthic (and active) lifestyle, their adaptability to the abiotic-fluctuating coastal environment and to the adverse conditions inside their eggs may favour the odds of the common cuttlefish recruits to endure the future acidified ocean. Nonetheless, this species is not only exposed to acidification in their natural environment, they may be also particularly susceptible to other anthropogenic pressure and other climate change-related variables. The cumulative effects of multiple stressors should be further addressed to accurately predict what the future reserves to this ecologically and economically important species.

Shop Amazon

Shop Amazon
Shop Amazon; support TONMO!
Shop Amazon
We are a participant in the Amazon Services LLC Associates Program, an affiliate program designed to provide a means for us to earn fees by linking to Amazon and affiliated sites.