• Welcome to TONMO, the premier cephalopod interest community. Founded in 2000, we have built a large community of experts, hobbyists and enthusiasts, some of whom come together when we host our biennial conference. To join in on the fun, sign up - it's free! You can also become a Supporter for just $50/year to remove all ads and gain access to our Supporters forum. Follow us on Twitter and Facebook for more cephy goodness.

Clusters of deep-sea egg-brooding octopods

DWhatley

Kraken
Staff member
Moderator
Joined
Sep 4, 2006
Messages
20,949
Clusters of deep-sea egg-brooding octopods associated with warm fluid discharge: an ill-fated fragment of a larger, discrete population?
Anne M.Hartwellm Janet R.Voightb. GeoffreyWheat 2018 (subscription Science Direct)
Abstract
Benthic octopods cluster on bare rock on Dorado Outcrop, a ~3000 m deep basalt exposure. The outcrop hosts intermittent discharge of relatively cool (up to 12.3 °C) hydrothermal fluid that carries about half as much oxygen as bottom seawater (~54 μM vs. 108 μM). We analyzed 231 hours of video footage and still images taken by sub-sea vehicles in 2013 and 2014 that documented the clustered octopods, members of the poorly-known genus Muusoctopus. The largest cluster (102 octopods) occurred in a 19 m2 area of fluid discharge, where the basalt was sediment-free; individual octopods were also seen across the outcrop. The clustered octopods appeared to be brooding eggs and a total of 11 egg clutches were confirmed. None of the 186 eggs closely examined showed embryonic development. The intermittent fluid discharge may clear the basalt of sediment and attract gravid octopods which then spawn. However, the increased temperature and limited oxygen of the discharging fluids may threaten the octopods’ survival. Octopods in/near areas of discharging fluid had significantly higher estimated respiration rates (3.1–9.8 contractions/minute) than did octopods away from discharging fluid (0.8–6.0 contractions/minute). Warm fluids likely increase the octopods’ metabolic rate and thus their oxygen demand but provide only limited oxygen. The resultant physiological stress is hypothesized to eventually kill eggs near fluid discharge. We hypothesize, because these eggs do not survive, the population is sustained by a larger pool of undetectable females that brood their eggs inside cool conduits of this and perhaps other, unstudied basalt outcrops.
 

Latest Posts

Forum statistics

Threads
20,792
Messages
206,537
Members
8,444
Latest member
turtledragon

Monty Awards

TONMOCON IV (2011): Terri
TONMOCON V (2013): Jean
TONMOCON VI (2015): Taollan
TONMOCON VII (2018): ekocak


Top