Vision and Bioluminescence in Cephalopods
Thomas, Kate Nicole 2018 (dissertation Duke University)
Thomas, Kate Nicole 2018 (dissertation Duke University)
In the deep pelagic ocean, there are no structures to serve as hiding spots, and visual interactions among animals are potentially continuous. The light environment in the midwater habitat is highly structured due to light scattering and absorption. Downwelling sunlight becomes exponentially dimmer, bluer, and more diffuse with depth. This optical structure means that an animal’s depth and viewing direction greatly affect the distances at which it can see visual targets such as potential prey or approaching predators. Additionally, this light environment mediates the visibility of bioluminescent camouflage and signals. My dissertation examines how the midwater light environment affects the ecology and evolution of vision and bioluminescence through an examination of cephalopods, a highly visual group that exhibits a broad diversity of eye adaptations and multiple evolutions of bioluminescence. My research investigates (1) vision and behavior in a deep-sea squid with dimorphic eyes, (2) depth-dependent patterns in cephalopod eye size and visual range, and (3) evolutionary dynamics in bioluminescent cephalopods.